Ulam Stability of new type additive functional equation in Multi-Banach Spaces
نویسندگان
چکیده
منابع مشابه
Stability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کاملStability of Cauchy Additive Functional Equation in Fuzzy Banach Spaces
In this article, we prove the generalized Hyers–Ulam stability of the following Cauchy additive functional equation
متن کاملStability of an Additive-Cubic-Quartic Functional Equation in Multi-Banach Spaces
and Applied Analysis 3 for some natural number n0. Moreover, if the second alternative holds, then i the sequence {Jnx} is convergent to a fixed point y∗ of J ; ii y∗ is the unique fixed point of J in the set Y : {y ∈ X | d J0x, y < ∞} and d y, y∗ ≤ 1/ 1 − L d y, Jy , for all , x, y ∈ Y . Following 30, 31 , we recall some basic facts concerning multi-normed spaces and some preliminary results. ...
متن کاملA new type of Hyers-Ulam-Rassias stability for Drygas functional equation
In this paper, we prove the generalized Hyers-Ulam-Rassias stability for the Drygas functional equation$$f(x+y)+f(x-y)=2f(x)+f(y)+f(-y)$$ in Banach spaces by using the Brzc{d}ek's fixed point theorem. Moreover, we give a general result on the hyperstability of this equation. Our results are improvements and generalizations of the main result of M. Piszczek and J. Szczawi'{n}ska [21].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Mathematica
سال: 2019
ISSN: 2456-8686
DOI: 10.26524/cm60